Table B Future capabilities of beamlines corresponding to the existing CSRF capability to be developed at CLS (2.9 GeV, 3nd generation ,i.e low emittance, ~ 10% of that of Aladdin, 500 mA when fully operational)

			Energy Range	Energy Resolution	Flux(photon/s	
Beamline	Source	Optics	(eV)		/0.1% bw)	End-station Capabilities
SGM	ID	Three spherical	227 - 1921	up to 12,600	$\sim 10^{12} - 10^{14}$	Branched lines: high
	linear	gratings		at 10µm x 10µm	high and	resolution photoemission of
	undulator			slit settings	medium	solids; photoabsorption, of
					resolution	solids; photoabsorption and
						photoionization of gases,
						fluorescence, XMLD
Variable	ID	Two interchangeable	5 - 240	10,000	$\sim 10^{12} - 10^{13}$	Branched lines:
line space	linear	variable line space		at 10µm x 10µm		photoemission of solids;
PGM	undulator	plane gratings		slit settings		photabsorption and
						photoionization
DCM	BM	Double crystal InSb,	1800 - 5500	3,000 at Si K-	~ 10 ¹²	Photoabsorption and
	bending	pre-collimating		edge (~1840 eV)		photoabsorption of gases
	magnet	mirror and post-				and solids, soft x-ray
		focusing mirror				scattering, XMCD

All three beamlines are now at a <u>preliminary design stage</u>. This is the time to voice your needs to the BT so that they will be addressed. Please contact personnel listed below by e-mail.

BT project coordinator and scientific advisor: T.K Sham (UWO): sham@uwo.ca

BT manager: Emil Hallin (CLS), emil@cls.usask.ca

SGM beamline coordinator: Ian Coulthard (CLS), coulthar@cls.usask.ca; CSRF contact, Yongfeng Hu:hu@julian.uwo.ca

PGM beamline coordinator: Kim Tan (CSRF), ktan2@facstaff.wisc.edu; CLS contact, Jeff Cutler:jcutler@cls.usask.ca

DCM beamline coordinator: Emil Hallin (CLS), emil@cls.usask.ca

Optics specialist: Brian Yates (CLS), byates@cls.usask.ca

Endstation and industrial application specialists: Yongfeng Hu(CSRF), yhu@julian.uwo.ca; Jeff Cutler (CLS), jcutler@cls.usask.ca

Crystal and x-ray optics consultant: De-tong Jiang (CLS): Jiang@cls.usask.ca